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Abstract The objective of this study was to identify
kinematic variables correlated with oxygen consump-
tion during spontaneous labriform swimming. Kine-
matic variables (swimming speed, change of speed,
turning angle, turning rate, turning radius and pectoral
fin beat frequency) and oxygen consumption (MO2)
of spontaneous swimming in Embiotoca lateralis
were measured in a circular arena using video
tracking and respirometry, respectively. The main
variable influencing MO2 was pectoral fin beat
frequency (r2=0.71). No significant relationship was
found between swimming speed and pectoral fin beat

frequency. Complementary to other methods within
biotelemetry such as EMG it is suggested that such
correlations of pectoral fin beat frequency may be
used to measure the energy requirements of labriform
swimming fish such as E. lateralis in the field, but
need to be taken with great caution since movement
and oxygen consumption patterns are likely to be
quite different in field situation compared to a small
lab tank. In addition, our methods could be useful to
measure metabolic costs of growth and development,
or bioassays for possible toxicological effects on fish.
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Introduction

Locomotion represents a large component of the
bioenergetic budget of many fish species (Koch and
Wieser 1983; Boisclair and Leggett 1989; Boisclair
and Sirois 1993). Nevertheless, this component
remains poorly documented (Soofiani and Hawkings
1985; Lucas et al. 1991; Ney 1993). Locomotion can
be described as steady or unsteady swimming. Steady
swimming is defined as swimming in a straight line at
a constant speed (Blake 1983; Viedeler 1993), mainly
studied in swimming respirometers (Brett 1964;
Beamish 1978; Korsmeyer et al. 2002). Unsteady
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swimming involves manoeuvres, acceleration and
deceleration (Blake 1983; Viedeler 1993), and is a
major component of spontaneous swimming activity
which includes common behaviours such as safeguard-
ing territories, searching for food, avoiding predators
and mating. The bioenergetics of spontaneous swim-
ming activities are relevant to estimate the locomotion
costs of free-ranging fish and therefore are ecologically
important. While the kinematics of unsteady swim-
ming has been studied extensively (Viedeler 1993;
Domenici and Blake 1997), its energetic aspects are
less well known (Webb 1991; Tang and Boisclair
1993; Krohn and Boisclair 1994; Steinhausen 2005).

Labriform swimming, i.e. using pectoral fins for
lift-based propulsion at slow to moderate speeds
(Webb 1973; Drucker and Jensen 1996a), is a wide-
spread locomotion mode in structural complex habitats,
where it is believed to provide greater manoeuvrability
and stability at low speeds (Korsmeyer et al. 2002).
Therefore, labriform swimming occurs in many groups
of perciform fishes, including numerous families
inhabiting coral reefs (Thorsen and Westneat 2005).
However, the energy consumption of spontaneous
swimming activity (involving both steady and unsteady
components) of labriform fish is only poorly under-
stood (Jones et al. 2007; Kendall et al. 2007). This is
important because forced swimming models of steady
activity are insufficient in explaining spontaneous
activity (Tang et al. 2000).

The striped surfperch (Embiotoca lateralis) is an
ideal subject species for studies of labriform swimming
behaviour as they rely on pectoral fins for propulsion
over a wide range of speeds (Drucker and Jensen
1996a). The objective of the study was to investigate
the energetic costs of spontaneous swimming in striped
surfperch, quantified by (a) speed (U), (b) acceleration
and deceleration (A), (c) turning angle (AT), (d) turning
radius (RT) and (e) the pectoral fin beat frequency (fP).
The aim was to find a potential predictor that can be
used as a tool to measure the energy expenditure in
the field at very low to moderate swimming speeds.

Materials and methods

Fish collection

The study was carried out at Friday Harbor Marine
Laboratories of the University of Washington, Friday

Harbor, San Juan Island, Washington, USA, in
summer 2005. Striped surf perch, Embiotoca lateralis,
were collected by beach seining at Jackson Beach on
San Juan Island. Fish were maintained unfed for at
least 72 h prior to experimentation in holding tanks
with a constant flow through of seawater at a
temperature of 13±0.5°C. Sex and maturation of
individual fish were not registered.

Respirometry of spontaneous swimming

Routine metabolic rates were measured in striped
surf perch (body length, L=18.6±0.4 cm, body mass,
M=128±0.2 g, n=7). Single fish were introduced into
a perspex circular arena respirometer (diameter
41.0 cm, height 11 cm, volume 14.2 l; Steinhausen
2005; Fig. 1) after being left to acclimatize for
minimum of 6 h. This period appeared to be sufficient
for other fish to settle to a routine oxygen consump-
tion rate (Steffensen et al. 1984; Jordan et al. 2001).
The respirometer was submerged in water to keep the
temperature constant at 13°C. Two external pumps
were connected to the respirometer by three ports on
the side. One pump re-circulated the water continually
at a slow flow rate (~0.7 l min−1) to mix the water.
Oxygen partial pressure was measured with the
system closed using a sharp fibre optic sensor (Pst3,
PreSens, Germany, limit of detection (LOD), 15 ppb;
measurement range, 0–45 ppm; accuracy at 20°C,
±1% at 100% air-saturation and ±0.15% at 1% air-

Fig. 1 Simplified illustration of the equipment used to
determine the spontaneous swimming levels and routine
metabolic rates in Embiotoca lateralis. During the flush period
(10 min), the respirometer was refilled with water from a
surrounding tank. During the measuring period, the decline in
pO2 was measured over 40 min. The position of the fish was
tracked with 5 Hz with a mounted CCD camera
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saturation), inserted in the recirculation tube so that
the sensor measured the bypassing water. The sensor
was connected to an oxygen meter (Microx TX3;
PreSens, Regensburg, Germany). The second pump
flushed the respirometer through two remaining ports
prior to each measuring period. Each period was
initiated by flushing the chamber with oxygenated
water for 15 min, followed by a 1 min period to
achieve a steady state in the chamber. Oxygen partial
pressure (pO2) was measured at a frequency of 1 Hz
over the following 40 min before another cycle was
started. Each trial consisted of 6 periods of fresh water
recirculation and four measuring periods.

Video tracking and analysis

The fish were filmed at 25 frames per second (fps)
with a CCD-camera (TVCCD 460;Monacor, Denmark)
mounted at a height of 1 m above the respirometer. In
order to synchronize the video of the swimming fish
with the MO2, the onset of each measuring period
was signalled by a brief flash of the infrared light
source. Images were digitized by a video capture card
(Pinnacle PCTV Rave) with a resolution of 640×
480 pixels. Data were collected with Labtech Note-
book Pro via a Measurement Computing PCMCIA-
DAS16D/D interface board. An infrared light source
(Monacor IR-10) illuminated the fish from below. The
geometrical centre of the resulting digitized silhouette
of the fish was tracked as a xy coordinate pair at a
frequency of 5 Hz using LoliTrack software (Loligo
Systems, Denmark). A script aligning xy coordinates
and the simultaneous decline in pO2 (r2=0.84±0.11)
into periods of 10 min was written with Lab-tech
Notebook Pro-software.

Pectoral fin beat frequency (fp) was measured by
counting fin beats from movie file sequences of
10 min in AVI format, collected simultaneously with
respirometry and swimming data during the closed
respirometry cycles. Each of the 24 periods per
individual (six experimental runs of each 1 h; four
measuring periods of each 10 min in each experi-
mental run) were ranked relative to each other; i.e.
low, medium or high MO2. From each category, three
periods of each 10 min were randomly assigned for
analysis of fP. This resulted in nine periods captured
video sequences per individual (n=63 for all fish).
For illustration, in one randomly selected case, the
effect of fP on MO2 was counted during the entire

experimental period of 6 hours (i.e. four periods times
6 h, Fig. 2).

Quantification of activity

Swimming speed (U) was calculated as the displace-
ment of geometrical centre of mass of the fish over
time and expressed as the average body length per
second (bl s−1) over 10 min. For every consecutive
frame, acceleration and deceleration (A) was calculat-
ed as the derivative of U, and expressed in absolute
values because the positive and negative accelerations
would have cancelled out and resulted in average A
close to 0. The turning angle (AT) was calculated as
the angle between two consecutive vectors character-
ising the direction of the fish in a horizontal plane,
given by cos θi=ui-1×ui(Ui-1×Ui)

−1. The turning
radius (RT) was determined according to Domenici
and Blake (1991) as the radius of the circle that can
be calculated from three consecutive positions of the
centre of mass. fP was adjusted to a standard body
mass of 0.1 kg according to:

fP 0:1kgð Þ ¼ fP M 0:1�1
� � 1�0:12ð Þ

where fP(0.1 kg) is pectoral fin beat frequency of a
0.1 kg fish, M is the body mass in kilogram and 0.12
is a scaling exponent (Drucker and Jensen 1996b).

Calculation of oxygen consumption

Mass specific oxygen consumption (MO2) was
calculated using the formula:

MO2 ¼ aVrespbM
�1

Fig. 2 Simultaneous recording of oxygen consumption (MO2=□)
and fin beat frequency (fP=▪) of a single surfperch at spontaneous
swimming. Each symbol represents a 10 min average
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where MO2 is the oxygen consumption (mg O2 kg−1

h−1), α is the slope of the linear regression (ΔO2 sat

Δt−1), Vresp is the volume of the respirometer minus
the volume of the fish (l) where body mass is
equalised body volume (1 kg=1 l), β is oxygen
solubility (mg O2 mmHg−1 l−1) and M is the body
mass of the fish (kg). To correct for mass specific
oxygen consumption, metabolic rates were adjusted to
a standard body mass of 0.1 kg using the formula

MO2 0:1kgð Þ ¼ MO2 M 0:1�1
� � 1�0:79ð Þ

where MO2 0.1 kg is the corrected consumption, M is
fish body mass and 0.79 is a scaling coefficient
(Clarke and Johnston 1999).

Oxygen consumption as a function of a predicting
kinematic variable, i.e. U, A, AT, RT, or fP(x) can be
described using a power function

MO2 ¼ aþ b xc

with a being the estimate of the standard metabolic
rate (SMR), i.e. the MO2 at zero activity, and b and c
being constants.

Statistics

The total number of fish was seven. The combined
influence of all variables (U, A, AT, RT, and fP) on
MO2 was explored using forward stepwise regression
(p<0.05, n=7, STATISTICA 6.0, StatSoft, Inc.,
2001). MO2 was log transformed (logMO2) for linear
regression analysis. Data used for statistical analysis
were average data over 10 min.

Results

Spontaneous swimming activity over time

The trends of fP and MO2 of an individual over the
period of 5 h and 40 min appear to be similar,
suggesting that the two are correlated (Fig. 2). No
measurements were taken when the respirometer
system was flushed for 30 min after a measuring period
of 40 min to ensure oxygen saturation of the water.

Oxygen uptake and kinematic variables modelling

MO2 in striped surfperch in the circular arena res-
pirometer ranged between 72 and 334 mg kg−1 h−1.

The mean swimming speeds were 0.21±0.1 bl s−1 and
ranged between 0.16–0.38 bl s−1 (n=174). A multi-
linear regression model for log-transformed MO2 was
computed:

log MO2 ¼ 1:59þ 0:95U þ 0:003Aþ 0:001AT

þ 0:003RT þ 0:047 fP

From the analysis, only fP and AT were significant-
ly contributing to log MO2 with an r2 of 0.66 and
0.32, respectively (forward stepwise regression, r2=
0.76, p<0.05, n=54). Plotting MO2 against fP
(Fig. 3a) resulted in an exponential curve described
by the formula:

MO2 ¼ SMRþ b f cP

with SMR being 85.93±11.59 mg kg−1 h−1, b being
17.37±9.18 and c being 1.08±0.25 (p<0.05, r2=0.71,

Fig. 3 a Relationship of pectoral fin beat frequency (fP) on log
MO2 at spontaneous swimming (MO2=SMR + b fP

c, r2=0.80,
p<0.05). b Relationship of turning angle (AT) on log MO2 at
spontaneous swimming (MO2=a + b AT

c, r2=0.38, p<0.05)
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n=54). When plotting MO2 against AT (Fig. 3b), the
exponential formula:

MO2 ¼ SMRþ b Ac
T

arose, with SMR being 87.20±16.41 mg kg−1 h−1,
b being 0.17±0.38 and c being 2.24±0.73 (p<0.05,
r2=0.38, n=174).

Discussion

The results suggest that energy requirements of a
labriform fish during spontaneous swimming activity
can be accurately predicted (r2=0.71) using the
pectoral fin beat frequency (fP). Although turning
angle (AT) also contributed to oxygen uptake, the
correlation was low (r2=0.32). Therefore, future
studies of metabolic rates and activity of free labri-
form swimming fish may benefit from including
techniques that allow direct measurements of fP in
the field. For example, a number of laboratory and
field studies have applied electromyography EMG to
correlate muscular recruitment with axial swimming
kinematics (Jayne and Lauder 1995a; Jayne and
Lauder 1995b) and to determine swimming costs of
axial swimmers (Hinch and Rand 1998; Standen et al.
2002). Cooke et al. (2004) predicted that some of the
most interesting future findings in ecology will be
derived from studies involving biotelemetry (i.e.
remote measurement of physiology, behaviour and/
or energetics). Given our results, we suggest that
EMG records of the pectoral activity may be used to
measure fin beat frequency (rather than speed and
distance) and hence to estimate oxygen consumption
in striped surf perch and other labriform fishes.

The minimum metabolic rates found by extrapo-
lating fP (Fig. 3a) and AT (Fig. 3b) to zero activity
resulted in values of 85.93±11.59 and 87.20±
16.41 mg O2 kg−1 h−1, respectively. These values
closely resemble the results by Cannas et al. (2006)
reporting an SMR of 82 mg O2 kg

−1 h−1 (adjusted to a
body mass of 0.1 kg) for striped surf perch in a
conventional swimming respirometer. Thus, the sim-
ilarity among the SMR estimates suggests a sufficient
accuracy of the oxygen consumption measurements in
the circular arena respirometer.

Commonly, MO2 is measured in swimming respir-
ometers at relatively higher swimming speeds than
those observed in this study. Work on forced linear

swimming may be particularly relevant for pelagic
fish that show long periods of relatively steady
swimming in nature. However, various authors have
shown that the costs of locomotion during spontane-
ous swimming in non-pelagic fish species are higher
than that of forced swimming (Weatherly and Gill
1987; Webb 1991; Steinhausen 2005). This is most
likely due to the additional resistance components of
the spontaneous swimming (Webb 1991). Relatively
low speed swimming (spontaneous) as it occurs in
nature may imply a high degree of manoeuvring,
stability control and accelerations/decelerations with
loss of momentum, especially in fish that live in
structurally complex environments (Domenici 2003).
This issue may apply to labriform swimmers, such as
Embiotocidae, which rely on pectoral fin activity for
all types of locomotion as well as a synchrony with
their ventilation rates (Webb 1975). As a result, the
relationship between speed and MO2 during such
activity patterns may be weak, as found already by
Gordon et al. (1998). This implies that the use of
pectoral fins in striped surf perch in our experiment is
mainly related to behaviours other than forward
locomotion, including manoeuvring, stability control
and hovering.

The observed low swimming speeds in the circular
arena respirometer (0.21±0.1 bl s−1) may be due to a
number of factors. Considering a potential effect of
laboratory confinement, it is possible that our results
may be influenced by the artificial confinement of the
fish. The tank was relatively small (tank diameter
≈2.2 bl) due to restrictions imposed by respirometry
techniques. Space availability favours higher speeds
(Tang and Boisclair 1993). Another explanation of the
low speeds observed during spontaneous swimming
may be the social behaviour of striped surf perch.
Grouping behaviour may have discouraged the
solitary fish to swim actively within the arena
respirometer, compared to fish swimming in a group.
This is in agreement with previous studies on cyprinid
fishes showing social facilitation (reviewed by Smith
1991). It remains to be established if the preferred
swimming speed and perhaps swimming kinematics
are influenced by the presence of conspecifics. Also,
the chamber was relatively large for respirometric
measurements. Therefore, it was necessary to close
the respirometer for 40 min to measure oxygen
consumption. This suggests that the fidelity of the
measurements is relatively small and may not detect
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peak values. Instead it shows mean oxygen consump-
tion over a 40 min period.

In conclusion, these results on the metabolic costs
of spontaneous activity in a labriform fish suggest that
fP (in combination with EMG record) may be used as
a field indicator of swimming energetics. However,
the relevance for the field needs to be taken with great
caution since movement and oxygen consumption
patterns are likely to be quite different in field
situation compared to a small lab tank. In addition,
our methods could be useful to measure metabolic
costs of growth and development, or bioassays for
possible toxicological effects on fish.
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