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ABSTRACT

A new sensor head and imaging application with planar oxygen optodes is presented. It combines the versatility
of the recently presented modular luminescence lifetime imaging system (MOLLI)' and the oxygen measuring
features of planar optodes to investigate the 2D-distribution of oxygen with a high spatial resolution.

The marine sediments are settled by microorganisms. They are characterized by steep gradients of solutes
perpendicular to the interface. Oxygen as the most favorable electron acceptor plays an important role in these
communities and exhibits steep gradients within distances of 100 um to a couple of millimeters. Traditionally
these gradients are commonly accessed by either oxygen microelectrodes or oxygen microoptodes, that measure
single oxygen depth profiles at spatial resolutions in the range of 50-5 um. As the influences on the metabolism
of these organisms are complex, profiles that are measured at one location exhibit a natural heterogeneity. To
address this problem by using the potential of planar oxygen optodes first measurements with optodes fixed to an
aquarium wall (Glud et al. 1996') based on luminescence intensity measurements have been published. They
showed the large amount of information that can be gathered by this method.

We further developed this approach by combining the planar optode with the capabilities of imaging fibers that
form an endoscope. We developed a periscope type sensor head that can be independently applied in biological
samples. It has an overall diameter of 2.5 mm and a calculated pixel resolution of 12 um. The according
measuring system compared to the published system' has a different excitation light setup and corresponding
endoscope optics to measure the lifetime based images.

We present the adapted system, sensor head and the first results of an application.

1. INTRODUCTION

Imaging of two-dimensional (2D) solute distributions with luminescent indicators is now established as an
important tool in medicine, biology and physics. Most of the described image measuring systems and
experimental setups were designed for specific applications like measurements of oxygen distribution in
tissue”, pH and Ca”* distributions in cells®®, oxygen partial pressure on skin surface or oxygen flux into
skin'> | oxygen distribution across the water-sediment interface' 16 and in biofilms'. These setups were
optimized for the corresponding experimental situation, but most of them lack versatility and many of them were
e.g. confined to microscope setups’* '"%°. Therefore we presented a new modular luminescence lifetime imaging
system (MOLLI)' that should allow for a versatile application of the imaging system to various different
applications. While many of the biological applications used the planar oxygen optode fixed to a transparent
setup wall and sensors that consisted of non transparent sensing layers'*'¢, we combined transparent sensing
layers, which enable a structural investigation by just looking through the sensor to correlate the oxygen
distribution with the sample behind, with imaging fibers, an industrial endoscope, to gain the free access within
the sample.
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Endoscopes are commonly used for investigations in the human body in medicine or investigations in industrial
applications which are not easy accessible. While there are few_ applications that use imaging fibers for
measurement of parameter distributions at high spatial resolution?’?, we combined the oxygen measuring
features of planar optodes with the flexibility of imaging fibers to measure the oxygen distribution at a high
spatial resolution. Here we describe a new application for MOLLI with an endoscope in the chosen setup
configurations. It was possible to image a time series of the respiration of photosynthetically active
cyanobacteria living in a symbiosis with a fungus as a lichen.

2. MATERIAL AND METHODS
2.1. Planar oxygen optode

The dynamic quenching of luminescence by oxygen is the basis for the measurement of oxygen concentrations
and distributions in various systems" 2% % 13- 14162731 "The applied sensors have a planar structure with the
luminescent indicator embedded in PVC that is spread by a knife coating process on a transparent polyester
support foil (Mylar, DuPont, USA). The applied indicator, ruthenium(Il)-tris-4,7-diphenyl-1,10 phenantroline
perchlorate (Ru[diph]s), is widely used for oxygen measuring purposes. It has a high quantum yield, long decay
or lifetimes and its absorption spectrum nearly perfectly overlaps with the emission spectrum of blue LED’s and
its large Stokes shift with the emission maximum at 605 nm makes it very suitable for luminescence lifetime
imaging" ' 1. The sensor area is imaged through the endoscope and an optical emission filter onto the CCD
chip of the camera. each pixel now monitors the light intensity of the luminescence light emission, or, with
proper timing, a part of the decay curve.

We calibrate the oxygen optodes with a two component model of the Stern-Volmer equation, that was derived
and experimentally modified from a two component model published by Carraway et al. 19917 %:

T I frac
—=—=————+(l-frac
To IO (1_st'[02]) ( )

with 1, T - lifetime in the absence of oxygen or with oxygen, I, I - luminescence intensity in the absence or with oxygen, K,
- bimolecular quenching coefficient, [O,] - oxygen concentration in % volume or % air saturation, frac - fractionating factor.

2.2. Endoscope

The first approach was to use the smallest available industrial version of an endoscope, consisting of 10000
imaging fibers and a fiber ring for illumination build in a stainless steel capillary of an overall diameter of
1.5 mm. The fibers had a length of 1.5m and the maximum achievable resolution was appr. 11 um per fiber
(working distance 2 mm).

outer diameter

tested version planned version
. diameter inner (outer) | 0.91 mm (2 mm) | 0.91 mm (2 mmm)
imaging fibers 30000 30000
view angle 71° 45°
working distance 4 mm 2.5mm
resolution:
at surface 5 pm / fiber 5 um / fiber
- 2.2 mm distance 24 um/ fiber 16 um / fiber
p N 4.2 mm distance 40 pm / fiber 25 um / fiber
illumination imaging fiber
fiber ring bundle
Figure 1: Characteristical data of the used endoscope:

The tested version column depicts the endoscope that was used in the application, while the second
column shows the data of the endoscope that will be used for futural applications
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This endoscope should be coupled to a 45° prism to enable imaging perpendicularly to the direction of fiber
penetration in a sample (Fig. 2 [a]). Unfortunately we could not get enough light out of it, unless we used a
binning of 8 pixels, which reduces the resolution by a factor of 4. So we decided to try experiments with a larger
standard endoscope (described in figure 1, Schélly Fiberoptic, Denzlingen, Germany). Because we got this
endoscope to test, additional parameters are given in the table (Fig. 1, 2nd column) to show the values of a
version that is currently under construction. The overall diameter of 2 mm was still acceptable while the large
view angle of 71° caused problems with sharpening of the black & white image. Here the depth of information
was not very clear, but the lifetime images were restricted to the layer where the luminescence was generated.
The principle of these industrial endoscopes is simple, the core bundle consists of imaging fibers with diameters
of 4-5 um. With additional imaging optics at both ends the image is transferred to the CCD chip in the camera,
the connection is a standard C-mount. Around the imaging fibers there is a ring of illumination fibers, where a
side incoupling at the camera end of the endoscope, enables the coupling of illumination light, that either could
be from a white light source or for luminescence measurements from blue LED's.

om

.,

Figure 2: MOLLI system with endoscope application - the PC controls the trigger source (Trigger) and
receives the digital images from the CCD-camera (SensiMod). The trigger source, a pulse delay
generator generates the timing signals that control the excitation light source (4 LED's,
Apeax=470nm, that are driven by a special driving circuit, LEDdrc) and the electronic shutter of the
camera. The planned periscope setup [a] will allow for measurements perpendicular to the
penetration direction, while the presented results are obtained with a butted end [b] setup.

As the planned inverse periscope setup (Fig. 2 [a]) could not be used with the tested endoscope we realized a
butted end version (Fig.2 [b]) where an optode holder was mounted on top of the endoscope. Between the
endoscope and the planar optode is a 2 mm thick polycarbonate distance window to generate the necessary
working distance.

2.3. MOLLI - Imaging system

The imaging system (Fig. 2), MOLLI, consists of an electrically cooled CCD-camera (SensiMod, PCO
Computer Optics, Kehlheim, Germany) with a direct fast electronical shutter feature. Additionally the camera
has a special customized modulation input to control directly the fast shutter (t,, = 500 ns and t,¢ = 500 ns,
maximum modulation frequency 1 MHz). The camera (dynamic range 12 = Bit, resolution 640x480 pixel) is
connected via a serial fiberoptical link to a camera control PCI-board in a Pentium based PC (Fig. 2). The PC
controls image acquisition, storage, display and the timing.. For the precise timing of excitation light source
switching and image acquisition, The PC is connected via a standard GPIB interface to a pulse delay generator
(Fig.2, trigger, DG535, SRS Stanford Research Systems, Sunnyvale, USA). Timing control and primary image
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acquisition was programmed in Delphi 4 (Delphi 4, Borland, Scotts Valley, USA), while the image processing
and visualization were programmed in IDL 5.2 (Research Systems Inc., Boulder, USA).

The camera was connected to the industrial endoscope that is described above. The excitation light source
consists of 4 LED’s (HLMP-CB15, Hewlett Packard, USA) coupled into a fiber bundle that is connected to the
illumination light input of the endoscope. The LED’s are driven by a self developed driving circuit (Fig. 2,
LEDdrc) that is connected to the pulse delay generator.

2.4. Timing of image acquisition

A
luminescence B v
intensity
A
l I : time
>
Figure 3: Principle image acquisition timing scheme for luminescence lifetime imaging. The given

luminescence signal vs. time corresponds to the light signal that is detected by each pixel of the
CCD-chip. The timing starts with excitation light ON and the camera shutter closed, the
luminophore absorbs light and luminescence is emitted. Then the excitation light is switched
OFF and the camera shutter is opened. This is repeated numerous times during the overall
camera "integration” time.

Figure 3 shows the detection principle that is applied for each pixel. First the excitation light source is switched
ON e.g. for 4 ps and illuminates the planar optode. The luminescence that is detected by each pixel rises until an
equilibrium between absorbed and emitted energy of the dye molecules is reached (Fig. 3, time course of the
luminescence signal). Then the light source is switched OFF and appr. 0.5 ps later the camera shutter is opened
allowing ambient light and luminescence to reach the CCD chip for a certain time window e.g. 3 ps. This is
repeated for a number of times, while the incident light is integrated on the CCD chip before the image is passed
to the PC. For further improvement of the signal to noise ratio, the procedure can be repeated a couple of times
to perform an efficient averaging. Additionally the image detection is repeated without the excitation light being
switched ON to record a background or dark image, that directly can be subtracted from the measured images to
prevent the ambient light information in the images from being further processed.

2.5. Evaluation of lifetime images

To evaluate the corresponding lifetime of the light information detected by each pixel, two sets of images are
collected, where each set is acquired with a different delay time t; relative to the switch OFF event of the
excitation light source (Fig. 4).
The basic assumption is that the decay curve follows a monoexponential decay. Many investigations have shown
that in principle 4 or even more lifetimes can be fitted to a recorded decay curve of such a sensor, while for
practical sensing applications; the use of a single so called apparent lifetime seems to be justified (as can be seen
by the comparison of raw data and model fit in figure 7).
The following image processing procedure is performed. Two sets of images (i = 1,2) are collected (Fig. 4),
while each image detection with a time interval A; has a certain delay t; compared to the excitation light OFF
event. To receive enough light intensity each image represents the integral over a number, n;, of illumination
events. The measured images S; are stored after subtracting the dark image. The intensity of one image is given
by:

I, = E‘—, i=1,2

n;
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luminescence

Figure 4: Timing scheme for recording of images to calculate the corresponding lifetime images. All
detected images have the same width A and integrate the intensity I; of the decay curve. Each
window has a different delay t; compared to the switch OFF time of the excitation light. The
window "open" operation is repeated several times for the same delay t; to integrate the light
information on the CCD chip.

This intensity is, assuming a monoexponential decay curve with the apparent lifetime 1, described by the

following equation:
L =1t exp(ii— } [1 - exp(— A‘-]]
T T

with the unknown intensity I at the time ty when the excitation light is switched OFF. As the image collection
uses a constant detection window width:

A=A, =A
The further image processing is reduced to:
1= A
ln(Sl /S, )

If the further reduction of noise is necessary, it is possible to increase the number of windows and average the
lifetime results, but in our applications the 2 window approach was sufficient.

3. EXPERIMENTAL SETUP & RESULTS
3.1 Experimental setups
3.1.1. Calibration measurements

To check the homogeneity of the prepared planar optodes and the performance of the optical setup calibration
measurements with a specific setup (Fig. 5, [a]) were made. The CCD-camera with the endoscope was attached
to a flow through cell, that could be perfused with defined gas mixtures. The gas mixtures of oxygen and
nitrogen were generated by a gas mixing pump (Wosthoff, Bochum, Germany), that allowed for mixtures with a
precision of 0.1 % of the adjusted value. The gas was pumped against a constant water level of 150 mm. Inside
the cell the a piece of the transparent planar optode was mounted and sets of images were taken at the following
oxygen concentrations: 0 — 5 — 10 — 20 — 30 — 50 — 70 — 100 % volume of oxygen. The images were measured at
a binning of 4, which result in a resolution of 350 pm per pixel. Later these image sets were used to calculate the
corresponding lifetime images that can be seen in figure 6. To compare the results with the assumed two
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component model, a region of interest, which covered appr. 90% of the whole endoscope image, was cut out in
each lifetime image and used for a mean and standard deviation calculation. The results are given as numbers
below each image in figure 6 and as a graph in figure 7. These average values were also used to determine a fit
to the model with the three variables: lifetime at zero oxygen, t,, quenching coefficient, K, and the fraction
factor, frac. The result is shown in figure 7.

ight ONIORE

lichen @ g,
flow l o ﬁ, D S

planar e
through g 3 water

cell optode /

[a] l S | endoscope oo e . [b]

gas mixture

Figure 5: Experimental setups for measurements with the endoscope:
[a] The endoscope is attached to a flow through cell, in which the transparent planar optode is
attached to a 3 mm thick glass plate inside the cell. Different gas mixtures of oxygen and nitrogen
are perfusing the cell during the measurement.
[b] A piece of lichen is placed on top of the transparent planar optode, that is separated from the
endoscope (not shown) by a 2mm thick polycarbonate window. Then this configuration is covered
with a large water drop (diameter appr. S mm).

3.1.2. Oxygen consumption of cyanobacteria in a lichen

The camera was turned upward and a special optode holder was fixed on top of the endoscope. A dry piece of
the soil lichen Collema sp. (Utah, USA), that is a symbiosis of a fungus and the cyanobacterium Nostoc was put
on top of the optode. Then a large water drop was placed to cover the lichen and the optode (Fig. 5, [b]). The
whole setup was illuminated by a halogen lamp for appr. 30 minutes. The light was switched off and appr. every
minute image sets were taken for 20 minutes. Then a black & white image was recorded by using the white light
as illumination. Finally water and lichen were removed and two calibration images were recorded, one with an
air saturated and one with deaerated water drop. These were used to generate the K, image, which is together
with the zero oxygen lifetime image necessary to convert the measured images into images of the oxygen
distribution. All images except the black & white one, which was measured without binning (corresponds to 16.2
um per pixel resolution), were measured with a binning of 2, which according to the distance of the optode from
the endoscope surface results in a resolution of appr. 65 um per pixel.

3.2. Results

3.2.1. Calibration measurements

As the images in figure 6 are scaled to the maximum lifetime value which is set to the maximum gray level
(white = 255), the gray level in the images nicely reflect the hyperbolic relation between the lifetime values and
the oxygen concentration. In the range between 0 and 20 % oxygen there is a large dynamic of 2.816 ps from
To=5.046 ps to 1= 2.23 ps while the lifetime change from 20 % to 100 % oxygen amounts to 1.059 ps.
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1 =5.046us 1=3.737ps 1=2.973ps T=2.23ps
0,=0% 0,=5% 0,=10% 0,=20%

1 =1.924ps 1 =1.529us 1=1.32us 1=1.171ps

0,=30% 0,=50% 0,=70% 0,=100%
Figure 6: Luminescence lifetime images obtained with the endoscope in the calibration measurement

sctup. Each image corresponds to a different oxygen/nitrogen mixture present in the flow through
cell. Below the images the oxygen concentration in percent volume oxygen and the average
apparent lifetime is given (has been averaged about 90% of the endoscope image).

Furthermore the result of fitting the model to the raw average lifetime data demonstrates the quality of the model
to describe the characteristics of the sensor and the good agreement of the assumption of an apparent lifetime to
describe real world data. The practical approach of considering the fraction factor as constant = (.85 seems to be
justified. The following table gives the fit values:

lifetime at zero oxygen 1, 5.0545 ps
quenching coefficient K 0.0916 %"
fraction factor frac 0.8523
correlation r 0.999535

3.2.2. Oxygen consumption of cyanobacteria in a lichen

If the desert lichens Collema sp. (Utah, USA) arc covered with water and illuminated with light the
cyanobacteria Nostoc that live in this symbiosis start their photosynthetic activity. As the samples were
illuminated for more than 30 minutes the cyanobacteria oversaturated the water drop with their oxygen
production, because they produce more oxygen than they consume. When the illumination is switched OFF.
there is only respiration, so oxygen is consumed which can nicely be followed by the changing oxygen
distributions in the time series in figurc 8. While the water drop becomes more and more oxygen depleted, it can
be seen that the lichen was touching in the upper part of the image the sensing foil because the decrease on
oxygen is here the fastest and deepest compared to the whole image. This is something that cannot be seen from
the black and white image because of the large view angle of this endoscope of 717 (anything from the working
distance to infinity is displayed sharp).
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apparent lifetime 1 [ps]

L]

0 T T T T T T T T -

0 10 20 30 40 50 60 70 80 90 100

oxygen [% volume]
Figure 7: Comparison of average lifetime data from endoscope measurements (see figure 6) with fit of
the applied model: raw data - black circles and error bars. fit curve - gray curve (fit values are
oiven in the table above).

lichen

b/w image t = 3.3 min

15.00 3000 4500 6000 75.00 90.00 105.00 12000
oxygen [% oir soturation]

Figure §: Black & white image of the lichen in front of the endoscope and time series of oxygen images.
that was started after 30 minutes of illumination and 1 minute switching off the light. Each image
was measured at a certain time after start of the darkness, reflecting the respiration of the
cyanobacteria, that while being illuminated have produced oxygen and consume oxygen in the
darkness. The gray level bar gives the coding in percent air saturation (100 % air saturation
corresponds to appr. 20 % volume oxygen.
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4. DISCUSSION

Although the originally planned application with a small endoscope have not yet been achieved, the presented
results using a little larger endoscope (outer diameter 2 mm and 30000 imaging fibers) demonstrate that such an
endoscope is a useful application of the modular luminescence lifetime imaging system MOLLI. With a further
optimization step concerning smaller view angle and working distance, leading to a more distinct imaged
distance the projected spatial resolution of 15 pm can be achieved.

The calibration measurements proved that for the first time both, the measurement of the 2D oxygen distribution,
and a structural analysis, can be achieved almost simultaneously. Before this only was possible by some
procedural tricks such as the application of dithionate grains to the sample to visualize the surface by measuring
the oxygen change. The only drawback of the PVC sensors, that have such a high quantum efficiency and
dynamic, is the overall lifetime of the sensor. The sensor changes its calibration characteristics with the
evaporation of the PVC solvent, which results in 4-5 days application without recalibration. But this might be
handled with a organically modified sol-gel as immobilization matrix with reduced dynamic but a lifetime of
months. The choice mostly depends on the planned application.

The measurement of the oxygen respiration of a lichen nicely shows how fast and efficient these organisms
change the oxic conditions in their nearby environment. This could be only weakly measured with single
microsensors. Here, the imaging technique can give much more insight in the physiological conditions of these
organisms. Therefore the endoscope application of MOLLI should allow enhanced investigation possibilities in
biological research.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the technical help with the camera system of M. Blaschke (PCO
Computer Optics, Kehlheim, Germany) and the technical help of W. Glatz with IDL programming (Creaso,
Gilching, Germany). Furthermore F. Garcia-Pichel is thanked for the lichen sample and valuable discussions
about the interpretation of the results. Finally the Max-Planck-Society is thanked for financial support.

REFERENCES

1. G. Holst, O. Kohls, I. Klimant, B. Konig, M. Kiihl, and T. Richter, "A modular luminescence lifetime
imaging system for mapping oxygen distribution in biological samples", Sensors and Actuators B 51, pp.
163-170, 1998.

2. W.L. Rumsey, J.M. Vanderkooi, and D.F. Wilson, "Imaging of Phosphorescence: a Novel Method for
Measuring Oxygen Distribution in Perfused Tissue", Science 241, pp. 1649-1651, 1988.

3. W.L. Rumsey, R. Iturriaga, D.F. Wilson, S. Lahiri, and D. Spergel, "Phosphorescence and Fluorescence
Imaging: New Tools for the Study of Carotid Body Function”, in Chemoreceptors and Chemoreceptor
Reflexes, pp. 73-79, Plenum Press, New York, 1990.

4. R.D. Shonat, D.F. Wilson, C.E. Riva, and M. Pawlowski, “Oxygen Distribution in the Retinal and Choroidal
Vessels in the Cat as Measured by a New Phosphorescence Imaging Method”, Appl. Opt. 31, pp. 3711-3718,
1992.

5. S. Vinogradov, L.-W. Lo, W.T. Jenkins, S.M. Evans, C. Koch, and D.F. Wilson, “Noninvasive Imaging of
the Distribution in Oxygen in Tissue In Vivo Using Near-Infrared Phosphors”, Biophys. J. 70, pp. 1609-
1617, 1996.

6. S. Nomura, M. Nakao, T. Nakanishi, S. Takamastu, and K. Tomita, “Real Time Imaging of Microscopic pH
Distribution with a Two-Dimensional pH-Imaging Apparatus”, Anal. Chem. 69, pp. 977-981, 1997.

7. J.R. Lakowicz and K.W. Berndt, "Lifetime-Selective Fluorescence Imaging Using a RF Phase Sensitive
Camera", Rev. Sci. Instrum. 62, pp. 1727-1734, 1991.

8. J.R. Lakowicz, "Fluorescence Lifetime Imaging Sensing Generates Cellular Images", Laser Focus World S,
1992.

9. JR. Lakowicz, H. Szmacinski, K. Nowaczyk, K.W. Berndt, and M. Johnson, "Fluorescence Lifetime
Imaging", Anal. Biochem. 202, pp. 316-330, 1991.

10. A.A. Panova, P. Pantano, and D.R. Walt, "In Situ Fluorescence Imaging of Localized Corrosion with a pH-
Sensitive Imaging Fiber", Anal. Chem. 69, 8, pp. 1635-1641, 1997.

11. P. Pantano and D.R. Walt, "Analytical Applications of Optical Imaging Fibers", Anal. Chem. 67, pp. 481A-
487A, 1995.

162

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/09/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

P. Hartmann and W. Ziegler, "Lifetime Imaging of Luminescent Oxygen Sensors Based on All-Solid-State
Technology", Anal. Chem. 68, pp. 4512-4514, 1996.

P. Hartmann, W. Ziegler, G. Holst, and D.W. Liibbers, "Oxygen Flux Fluorescence Lifetime Imaging”,
Sensors and Actuators B 38-39, pp. 110-115, 1997.

R.N. Glud, N.B. Ramsing, J.K. Gundersen, and 1. Klimant, “Planar Optrodes: A New Tool for Fine Scale
Measurements of Two-Dimensional O, Distribution in Benthic Communities”, Mar. Ecol. Prog. Ser. 140,
pp. 217-226, 1996.

R.N. Glud, C.M. Santegoeds, D. DeBeer, O. Kohls, and N.B. Ramsing, " Oxygen Dynamics at the Base of a
Biofilm Studied with Planar Optodes, Aquat. Microb. Ecol. 14, pp. 223-233, 1998.

R.N. Glud, M. Kiihl, O. Kohls, and N.B. Ramsing, "Heterogeneity of Oxygen Production and Consumption
in a Photosynthetic Microbial Mat as Studied by Planar Optodes", J. Phycol. 35, pp. 270-279, 1999.

C.G. Morgan, A.C. Mitchell, and J.G. Murray, "Fluorescence Decay Time Imaging Using an Imaging
Photon Detector with a Radiofrequency Photon Correlation System", in Conference on Time-Resolved Laser
Spectroscopy in Biochemistry I, Proc. SPIE, pp. 798-807, 1990.

G. Marriott, R.M. Clegg, D.J. Arndt-Jovin, and T.M. Jovin, "Time Resolved Imaging Microscopy", Biophys.
J. 60, pp. 1374-1387, 1991.

R.M. Clegg, B. Feddersen, E. Gratton, and T.M. Jovin, "Time Resolved Imaging Fluorescence Microscopy",
Conference on Time-Resolved Laser Spectroscopy in Biochemistry II, Proc. SPIE, pp. 448-460, 1990.

X.F. Wang, T. Uchida, D.M. Coleman, and S. Minami, “A Two-Dimensional Fluorescence Lifetime
Imaging System Using a Gated Image Intensifier”, Appl. Spec. 45, pp. 360-366, 1991.

J.C. Carter, W.J. Egan, R.B. Nair, C.J. Murphy, S.L. Morgan, and S.M. Angel, "Fiber-Optic Imaging for In-
Situ Chemical Measurements”, Proc. SPIE 3540, pp. 210-221, 1998.

S.J. Glenn, B.M. Cullum, J.C. Carter, R.B. Nair, D.A. Nivens, C.M. Murphy, and S.M. Angel,
"Development of a Lifetime-Based Fiber-Optic Imaging Sensor to Study Water Transport in Thin Nafion™
Membranes", Proc. SPIE 3540, pp. 235-245, 1998.

H.T. Skinner, T.F. Cooney, S.K. Sharma, and S.M. Angel, "Remote Raman Microimaging Using an AOTF
and a Spatially Coherent Microfiber Optical Probe", Appl. Spectroscop. 50, 8, pp. 1007-1013, 1996.

K.S. Bronk, K.L. Michael, P. Pantano, and D.R. Walt, "Combined Imaging and Chemical Sensing Using a
Single Optical Imaging Fiber", Anal. Chem. 67, 17, pp. 2570-2757, 1995.

E.R. Carraway, J.N. Demas, B.A. DeGraff, and J.R. Bacon, "Photophysics and Photochemistry of Oxygen
Sensors Based on Luminescent Transition-Metal Complexes", Analytical Chemistry 63, pp. 337-342, 1991.
E.R. Carraway, J.N. Demas, and B.A. DeGraff, "Luminescence Quenching Mechanism for
Microheterogeneous Systems", Analytical Chemistry 63, pp. 332-336, 1991.

G. Holst, M. Kiihl, and I. Klimant, "A Novel Measuring System for Oxygen Microoptodes based on Phase
Modulation Technique", Proc. SPIE 2508, pp. 387-398, 1995.

I. Klimant, P. Belser, and O.S. Wolfbeis, "Novel Longwave Absorbing and Emitting Transition Metal
Complexes for Use in Optical Oxygen Sensing", Europt(r)ode I, Graz, 1, 1992.

I. Klimant, V. Meyer, and M. Kiihl, "Fiber-Optic Oxygen Microsensors, a New Tool in Aquatic Biology",
Limnology & Oceanography 40, pp. 1159-1165, 1995.

I. Klimant, G. Holst, and M. Kiihl, "Oxygen Microoptodes and their Application in Aquatic Environment",
Proc. SPIE 2508, pp. 375-386, 1995.

I. Klimant, M. Kiihl, R.N. Glud, and G. Holst, "Optical Measurement of Oxygen and Temperature in
Microscale: Strategies and Biological Applications”, Sensors and Actuators B 38, pp. 29-37, 1997.

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/09/2016 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx

163



