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Abstract—A method for the solution of the inverse problem of radiative transfer is presented
which utilizes the internal fluxes measured at different depths and in different directions with
optical radiance microprobes in dense multiple scattering media. The method yields optical
cross-sections and the phase function for the sample even when these parameters are depth
dependent. The sensitivity analysis shows that the theoretical errors caused by the finite
number of measurements as well as by the non-uniform directional sensitivity of the
microprobes can be held on a low level; even the fourth Legendre coefficient of the unknown
phase function can be recovered to the accuracy of 10%. Copyright © 1998 Elsevier
Science Ltd. All rights reserved
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1. INTRODUCTION

The inverse problem of radiative transfer—to find the optical parameters on the basis of available
measurements of radiances and fluxes—is a central topic for many applied areas. Specifically in
biomedical and ecological research this problem has recently attracted great attention because it
opens way for modeling and general analysis of light-driven processes like photosynthesis without
limitations imposed by the specific features of individual samples. Attempts to solve the inverse
problem in biomedical optics'*® use different methods ranging from the adding-doubling method
to the inverse Monte-Carlo technique and are restricted either to diffusion or to multi-flux
approximation. To our knowledge, the full problem including the estimation of the unknown phase
function was in no case approached on the level of the general equation of radiative transfer.

At the same time the experimental methods providing the input data for the theory improved
strongly during the last years. One of these advancements is the three-dimensional measurement
of the internal fluxes with the optical radiance microprobes increasingly employed in plant tissues,
aquatic sediments, microbial mats and so called phantom media which provide optical models for
medical applications.”'* Until recently this method was not applicable for quantitative analysis
because of the so called instrumental error, an inherent undetermined inaccuracy which originates
from the non-uniform directional sensitivity of the microprobe. However, since a novel theory of
measurements provides a good correction for the instrumental error'® " the idea to develop a theory
solving the complete inverse problem on the basis of this impressive data set has become reasonable
and promising.

This is the aim of the present paper. The problem is formulated as follows. We consider a plane
parallel turbid sample (Fig. 1) illuminated by a collimated light flux. Three-dimensional
measurements of the internal fluxes are performed by the optical radiance microprobe at different
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x=0

Fig. 1. Plan—parallel turbid sample of thickness L illuminated by a collimated flux F,. x—depth
coordinate; §—zenithal angular coordinate.

depths, x; and in different zenithal directions 6, The task is to obtain on the basis of these
measurements the optical parameters, which can also depend on x: the extinction cross-section ¢
and the phase function p(u,u’), (4 = cosf).

In Sec. 2.1 the theory is presented. It is based on the determination of subsequent moments of
the radiance distribution using the equation of radiative transfer in which both the phase function
and the directional cosine, u, are developed into series of Legendre polynomials. The derivation
results in a set of differential equations for the moments; these equations contain the Legendre
coefficients of the phase function. Sec. 2.2 combines these results with the theory correcting the
three-dimensional measurements for the instrumental error. It results in a set of differential
equations which can be solved with respect to the Legendre coefficients of the phase function. In
Sec. 2.3 containing an extended example of application we study the accuracy of the method and
its stability under variable geometry of measurements and variable step size along the depth
coordinate. Sec. 3 contains the concluding discussion and outlook.

2. RESULTS
2.1. Theory: the method of moments

We consider a plane parallel sample (Fig. 1) under collimated incident light flux F,. The diffuse
component of radiance I(t,u) obeys the equation of radiative transfer

al(z, / R )
w S 1w = 1/2f Iy pQup’ )dp’ + 27 pu,1x)e a

-1

Here p(u,u’,x) is the phase function, u = cosf, 0 is the zenithal angle (cf.,, Fig. 1), 1 = o(x)-x is
the optical depth, o(x) is the extinction cross-section, and x is the vertical depth coordinate (cf.,
Fig. 1). Eq. (1) is written for a medium with azimuthal symmetry, i.e., I, p, ¢ are magnitudes
integrated with respect to the azimuthal coordinate (cf. chapter 7 in Ref. [18]). Note that the optical
parameters ¢ and p may vary with x.

Let us introduce the moments of the radiance distribution

K ()= f A (r,p)dy; n=0,1,2, ... )

-1

The two first moments have a clear physical meaning: Ky(t) is proportional to the total
fluence rate of the diffuse radiant energy, K,(t) is proportional to downstream diffuse radiant
flux.
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As well known the phase function can be developed into series of Legendre polynomials'®

Pl x) = 320+ Do®PPE) ®

i=0
specifically
p(p,1,x) = Y (2i + Dw(x)P(p), since P(1)=1,i=0,1,2, ....

i=0

Our purpose in this section will be to establish relationships between the unknown
Legendre coefficients w; of the phase function on the one hand and the moments K, and
their derivatives, which can be estimated from the measured internal fluxes, on the other
hand.

Integrating over p from — 1 to 1 Eq. (1) multiplied by u" and using (2) and (3) we obtain

Kaod®) | g ) = z @i + D) J _lPi(u)u"du[é f PO + o e} @)

0

The adding up in (4) continues only till i = n since

1
J uP(u)dp = 0 for i > n.

Let us consider the integrals in (4). We start with

1
J u*P(p)du for i < n.
-1

Developing u" into series of Legendre polynomials"

w= Z auwP(p),
k=0

(n+k+ Dln—k)!

2k + Dn!l(n — D!/ for the even n + k
[
0 for the odd n + &,

we get
1 n 1 2
J_ .“ P(p)du = k;ankﬁ IPk(u)P,'(u)du =551 %
2 fori=k
. ! 2i+ 1
since J lPk(u)Pi(u)du = 0 for i # k.

Now we turn to the integral
1
j P)I(z,p)dp.
-1
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Since Py(u) is a polynomial of degree i"

P(w) = ¥ byt with

k=0

(i + k)

2"( 5:2—5 )!k!( d “; k )./
for theeveni + k

0 for the odd i + &,

by= | (=192

we obtain

J P{w)I(z,p)dp = i bikJ pl(t,p)dp = ibikKk(r)

k=0 k=0

Thus the formula (4) can be transformed to

0K, . (7)
Pos

+ K,(x) = Zamw(x)Zb i n=01,.... 5

Below we give the explicit expressions of Eq. (5) for the first five values of #:

0K,(7) Fe ™

e (1 — w)K; + o Do (6)
oK Fe~
—62;(5) = — (1 —w)K, + —"2‘;—@.
6[(;(1) - (1~ w)K; + Ko(w,
T
5_]%}(‘[_) = — (1 — wy)K; + 3K (0, — + 20)3)/5
5%:” — (1 = )i + 6Kl — 02)]T + Koo — 200/7 +

Summarizing the above derivations we arrive at the following conclusion. If at some depth x a
set of moments K, and their derivatives is estimated and also the cross-section ¢ is known then
the corresponding number of Legendre coefficients w; can be calculated from the Eq. (5) or Eq. (6).
The next step is to show how the moments and their derivatives can be obtained from the internal
fluxes measured with optical microprobes.

2.2. Combining the method of moments with the measurements of internal fluxes

This section is essentially based on the theory of three-dimensional measurements with radiance
microprobes and correction of these measurements for the specific instrumental error.'*'” Below
follows a summary of these results. A radiance microprobe directionally sensing light within a
rather narrow acceptance angle can be advanced in any zenithal direction 6; to any depth of a
horizontal sample (c.f., Fig. 1). Imagine a unit sphere circumscribing point P at a depth x where
these measurements are performed (Fig. 2). Subdivide the sphere into N horizontal spherical bands,
the band / confined between the horizontal circles on the sphere having coordinates 6,_, and .
To each band corresponds a single measurement in a direction 6 (6,_, < 6, < 8). Figure 2 shows
the vertical projection of the unit sphere with the first band concentrated to a point 8, = 6,=0
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Fig. 2. Geometry of measurements with the radiance microprobes. The unit sphere is subdivided into N

spherical bands, the first band is concentrated to a point. 6;_,,6—zenithal coordinates confining the band

i. 6(6,_, <6, < 8)—direction of the measurement targeting the band i. L—the unknown radiance

assumed to be constant over the band i. h(v)—the function of directional sensitivity of the microprobe;
v—angular deviation from the axis of the microprobe, v = 6 — 6.

and corresponding to the collimated component of the radiation L, = Fee ™ “*d(u — 1), where the
-function obeys [*,6(u)dy = 1.

In this scheme the radiance distribution I(x,u) is assumed to be a stepwise constant function
having value L; in a band number i. To the accuracy of this discretion the set of measured fluxes
M, (i=1, 2., N) is supposed to be an estimate of the radiance distribution {L;} and the radiant
fluence rate (the scalar irradiance) appears as a sum of L;’s weighted with the fractional areas of
the corresponding spherical bands on the unit sphere. However, a strong discrepancy between the
sets {M;} and {L}—the instrumental error—arises due to the non-uniform directional sensitivity
of the microprobe (see Fig. 2) which can be measured independently and presented as

h(3) = cos - exp( — m sin’Y); 9=60-6, @)

where m is the fitting parameter adjusting the function 4(v) to the individual curve of the
microprobe under consideration. As seen in Fig. 2 the probe senses the incident radiation as
weighted by the function A(v) and also perceives contributions outside the targeted band. Hence,
the sets {M;} and {L;} are connected by a system of linear equations

Z‘,i.iLj=Mi, i=12,..,N, (8)

=1

where the coefficients J; are surface integrals of 4(v) with the domains of integration arising from
the geometry of measurements, i.e., {6} and {6}. These integrals depend also on the probe
parameter m. Specifically

Ja = exp( — m sin’8)cos 6.

Thus the instrumental error can be eliminated by solving the system (8) with respect to L; for any
m and any geometry of measurements.
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Now this result will be combined with the method of moments. From the measurements at
different depths x,, x,.., xy two sets of radiance values L(x;) are obtained:{x;, L,(x;)} (j= 1.,
M)—for the collimated component L,(x) = Fe ™ “"and {x;, L(x)} (j = 1.., M; i = 2.., N)}—for the
diffuse component.

The first set is used to determine the extinction cross-section ¢(x). To this end assuming an
integer k > 1 the fitting of M points (x;; In L,(x;)) has to be performed by the polynomial of degree k

In Li(x) ® ay + a\x + a-x* + ... + ayx*.
The collimated component is presented then by the function
e exp (@ + ax + ... + ax*")

with F, =e% and o(x) = a, + a;x + ,. + & X _ -
The second set provides the set of diffuse moments—{x;,K,(x;)}—according to the formula

N

1
Ki(x) = J I(x,p)prdx = ) ;%—'%—‘% (cos“+ 9, — cos“+‘§i> C)]
—1 i=2

which results in an obvious way from the discretion of the I(x,u) and integration over each band.
The set {x;,K,(x;)} is applied to determine the Legendre coefficients of the phase function. To this
end Eq. (5) are discretized as follows. Consider the interval [x;x;,,]. Designate its length as
Ax; = x;,, — x; and its center as X; = x; + Ax;/2. The following approximations for terms of Eq. (6)
in the point X; are valid:

aI<n ~ Kn(x + 1) — Kn(»x!’)

ot o (X)Ax; ’
K, =~ (Ki(x; 1) + Ki(x))/2, e " =e "N

With these approximations Eq. (5) can be solved with respect to wy(%) (i=0,1..;j=1,2., M —1).

Thus a set of three-dimensional measurements with the radiance microprobes performed at
different depths and corrected for the instrumental error provides the optical parameters of a
sample. Now the questions concerning accuracy and stability of the method for variable geometry
of measurements and parameter of the microprobe are of primary interest. In the next section an
extended example of application will be used to perform sensitivity analysis and to answer these
questions.

2.3. Example of application and sensitivity analysis

In this section we check the theory applying it to a sample with known optical properties.
Solutions of the inverse problem for different values of the parameter of microprobe m and for
different geometries of measurements are obtained providing a test for the stability of the method.
The procedure includes following steps.

In Sec. 2.3.1 we find the radiance distributions at different depths of a sample with known
(constant over the entire depth) ¢ and P(u,u’) and given incident flux F, i.e., solve the direct
problem of radiative transfer. Sec. 2.3.2 treats the direct problem of measurements: we find how
these radiance distributions are ‘seen’ by a microprobe at any direction 6, (three different values
of the microprobe parameter m are considered). Sec. 2.3.3 contains the application of the theory
to these observable quantities M,. Choosing a number of spherical bands which is reasonable for
practical measurements, we compute for each band (on the basis of M; and the band sizes) the
values of L; representing the constant radiance for each band. Then we apply these L; values to
solve the inverse problem with the method of moments. The optical parameters o and o, (Legendre
coefficients of p(u,u’)) obtained in this way are compared to the corresponding magnitudes we
started with in Sec. 2.3.1. The entire procedure is performed for three different geometries of
measurements.

2.3.1. Solution of the equation of radiative transfer for a sample with known properties by the
method of discrete ordinates. We consider a plane parallel turbid sample with thickness L = 2 units
of length and extinction cross-section ¢ =2 (unit of length)~' illuminated by collimated flux
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F, = 10 unit of radiant flux normal to its surface. We assume that there are no jumps of refractive
index at the sample boundaries, thus the boundary conditions for the diffuse component of
radiation I(x,u) are

I(0,p) =0 for u>0 ‘ (10)
I(L,p)=0 for u<0

As a phase function we take the Henyey-Greenstein function with the parameters a = 0.8 and
g = 0.5. The development of this function into series of Legendre polynomials is

plupw)=ay Qi+ Dg'P(W)P(p), ie., = ag,i=0,1, ...
i=0

To find the radiance distributions we solve Eq. (1) with the boundary conditions (10).
Solution was obtained with the discrete ordinates method (cf., chapter 8 in Ref. ), For the
computation of the integrals of type

J Sf(wdp

the Gaussian quadrature formula was used. It is known? that the Gaussian quadrature

Z‘lwif ()

provides best integration with the least number of quadrature points g (and weights w).
Specifically, an M points Gaussian quadrature will exactly integrate a polynomial of degree
2M — 1.

We have used the standard Gaussian quadrature set for M = 10 as given in Table 1. For a
discretion of Eq. (1) we introduce a spatial mesh

x =0,%,....X0=1L with Ax = L/9.

Following specifications were made for the midpoint % = x; + Ax/2 of the ith mesh cell

oI(xp) 1 (x5 1) — 10x)
ot ocAx ’

1(Fo) = (x5 ) + Ixm)/2, e i=e "%

Table 1. Gaussian quadrature points used to solve the direct problem
of radiative transfer with the method of discrete ordinates and further
to simulate the result of measurements with corresponding geometry
(Plan 2). i—number of a Gaussian point; 6, (degrces)—zenithal
coordinate; and w—the weight in the point i; g = cos 6.

i Wi Hi Gi(")
i 0.0667 0.9739 13.1
2 0.1494 0.8651 30.1
3 0.2191 0.6794 47.2
4 0.2693 0.4333 64.3
5 0.2955 0.1488 81.4
6 0.2955 —0.1488 98.6
7 0.2693 —0.4333 115.7
8 0.2191 —0.6794 132.8
9 0.1494 —0.8651 149.9
10 0.0667 —-0.9739 166.9
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Table 2. Solution of the direct problem of radiative transfer for the radiance values /(x;, 8;); x—depth; 6,—Gaussian points.
The second column corresponds to the collimated light Fy-exp( — ox); F, = 10; o = 2; L (thickness) = 2.

X Values 6, in degrees

0 13.1 30.1 47.2 64.3 81.4 98.6 115.7 132.8 149.9 166.9
0 10.000  0.000 0.000 0.000 0.000 0.000 0.594 0.559 0.495 0.445 0.416
2/9 6.412  1.102 0.787 0.596 0.576 0.820 0.668 0.556 0.468 0.408 0.377
4/9 4111 1572 1.148 0.881 0.799 0.743 0.611 0.492 0.404 0.347 0.318
6/9 2.636  1.681 1.249 0.960 0.819 0.684 0.534 0.418 0.336 0.284 0.258
8/9 1.690  1.603 1.208 0.926 0.755 0.593 0.450 0.344 0.270 0.224 0.201
10/9 1.084  1.437 1.095 0.837 0.658 0.498 0.369 0.274 0.208 0.169 0.150
12/9 0.695  1.239 0.954 0.726 0.555 0.408 0.295 0.209 0.151 0.119 0.104
14/9 0.446  1.041 0.808 0.611 0.456 0.326 0.226 0.146 0.097 0.073 0.063
16/9 0.286  0.858 0.670 0.503 0.367 0.254 0.176 0.077 0.045 0.032 0.027
L=2 0.183  0.694 0.543 0.402 0.282 0.178 0.000 0.000 0.000 0.000 0.000

Designating /(x;,u) = ¢@; we arrived at the following approximation of Eq. (1):

i+1j — Pij i1y T @y 1 & itk T @i
‘uj(P+;JAx(pJ + ‘P+1,12 Py _ 3 ZP(#j,#k)Wk(pH'kz Dix

k=1
FO —oF, . .
+ = p(y,1)e "5, (i=12,...9j=1,..,10)
47
The set of 90 equations contains 100 unknown ¢, (i = 1., 10; j = 1.., 10). The boundary conditions
at each boundary
(pl,i:O, J=17 EXE) 5;

90101 = 09 _] = 69 3% 10;
provide the additional 10 equations to complete the set and allow for a solution. Results of the
computation of the radiances /(xu) are presented in Table 2. The moments K,(x;) were calculated
on the basis of radiances also using the Gaussian quadrature

K(x) = $w Gt an

i=0

Figure 3 shows the first four moments K, (n = 0,1,2,3) as functions of depth x.
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Fig. 3. The first four moments K, (n = 0,1,2,3) obtained on the basis of the solution of the direct problem
of radiative transfer given in Table 2. x—the depth coordinate; L = 2—thickness of the sample.
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2.3.2. Determination of the radiant fluxes M(8) observable by the optical microprobes. The diffuse
component of radiance is determined for 10 directions at each of 10 depth x; (see Table 2). For
any fixed depth we obtain on the basis of Table 2 the diffuse radiance as a continuous function
of 8: I(x,8). Now using Eq. (8) in a direct way, i.e., calculating M, we can estimate how this radiance
distribution will be seen by a microprobe at any direction 8,. For this purpose we discretize I(x,8)
subdividing the unit sphere into 36 bands of size 5°. The constant within a band value of the diffuse
radiance L(x) is obtained as the value of /(x,0) in the 5°-band center:

L(x)=1I(x0), 6,=5(—-1)—250", j=2,..,36.
The collimated component is determined as
Ll(x) = Fge_ﬂx

For any depth x and any assumed parameter of the microprobe m the observable
magnitude M (x) = M(x,8)) can now be calculated from Eq. (8). Results of these calculations are
given in Fig. 4 for four different depths x and three different values of the probe parameter

(a) (b)
1.0 1.0
0.20 — 0.2 -
0.5 0.5
0.0 0.0
0 5 1015 2025 0 5 1015 20 25
Iy
0.10 - 6 (deg) 0.1 = 6 (deg)
000 [ I 00 l T T 1 1 T
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
0 (deg) 6 (deg)
(c) (d)
1.0 1.0
0.2 0.2
0.5 0.5
Ni
0.0 0.0
0 5 1015 2025 0 § 1015 2025
0 (deg) 0 (deg)
0.0 | I t t t + : ﬁ'ﬁ 0.0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

0 (deg) 6 (deg)

Fig. 4. Observable fluxes M(8)/F, (thin curves) calculated for 3 values of the probe parameter m (curves

from the left to the right correspond to m values 40, 20, 10) on the basis of the radiance distribution L(6)/F,

(thick curve). Abscissa~zenithal coordinate 6 in degrees. Insets show the curves M (0) in the range of small

6 on large scale. Plates (a)-(d) show calculations performed for the depths x = 0; x = 2/9; x = 4/9; x = 6/9
respectively.
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m = 40,20,10. The variation of m values can be made visible by expressing m in terms of another
parameter—the acceptance angle of the probe x—which is the value v, providing 50% of the
maximal sensitivity: A(v,p) = 1/2 (c.f., Eq. (7)). Specifically the values m = 40,20,10 used in the
test correspond to o = 7,5° (very peaked sensitivity function) « = 10,7° (intermediate function),
o = 15" (very smooth sensitivity function) respectively. As seen in Fig. 4 the non-corrected
measured quantity M (6) (three thin curves for different m values) differs strongly from the real
radiance distribu‘ion (thick curve) this discrepancy being larger for larger acceptance angles of the
probe.

2.3.3. Solution of the inverse problem using the observable quantities corrected for the instrumental
error. At this last step we will calculate the optical parameters of the sample on the basis of the
observable magnitude M(x, #). To this end we should choose the plan of measurements: a set of
directions 6, (j = 1.., N; 8, = 0) of measurements and a subdivision of the unit sphere into a set
of bands with assumed constant values of radiance. Then we should calculate for each depth x;
these constant values L; (x;) on the basis of M; (x), i.e. correct for the instrumental error. Note
that this correction will be made each time on the basis of a concrete chosen plane of measurements,
e.g., with the corresponding band sizes. In conclusion we calculate on the basis of L; (x;) the
cross-section ¢ and the Legendre coefficients , of the phase function with the method of moments.
These results should be then compared to the initial true values we started with in Sec. 2.3.1.

The entire above procedure has been performed for three plans of measurements

1. Equidistant measurements with the step 20° (N = 10).

2. Measurements in the Gaussian points 6; according to Table 1 with an additional measurement
in the point § = 0 (N = 11). In this case the moments have been calculated according to Eq. (11).

3. Equidistant measurements with the step 10" (N = 19).

For each plan of measurements the subdivision of the sphere into bands is implied by the set
6,; the coordinates 6, of the circles confining the bands are given as

b= +6)2  (=2..M-16=0.

Since it has been shown'® " that from a given set {M;} the procedure correcting for the instrumental
error recovers practically the same set {L;} independently of what probe parameter m has been
applied the following calculations were restricted to single value m = 20.

Table 3 shows an example of intermediate results: the values Z; (x;) (j=1.., 11; i = 1.,, 10) for
the plan 2 (compare to the data in Table 2). All the final results—the computed values of F, g,
W,, W, M5, ©3, 0, based on three different sets of measured data (plans 1-3) together with the true
values of these magnitudes—are collected in Table 4. The w; values are averaged over all depth.
For each o, three different step size along the depth coordinate were used when computing the
increments of the moments according to Eq. (9). Calculations based on step sizes L/9 (using depths
layers 1-2, 2-3..); 2L/9 (using depths layers 1-3, 2-4..); 3L/9 (using depths layers 1-4, 2-5..) are
presented in the lines 1, 2 and 3 respectively.

Table 3. Solution for the plan 2 for the collimated (column 2) and diffuse radiance values L; (x)) obtained from the
observable fluxes M (x;, §) with the procedure correcting for instrumental error.

x Values 6, in degree

0 13.1 30.1 47.2 64.3 814 98.6 115.7 132.8 149.9 166.9
0 10.027 —0.189  0.037 —-0.004 —0.011 0.046 0.885 0.648 0.486 0.468 0.416
2/9 6.422 1.016  0.808 0.572 0.588  0.802 0.743 0.566 0.500 0.417 0.383
4/9 4,119 1.516 1.159 0.864 0.810 0.724 0.672 0.515 0.427 0.359 0.322
6/9 2.640 1.655 1.254 0.948 0.829  0.662 0.598 0.438 0.358 0.295 0.261
8/9 1.692 1.593 1.210 0918 0.762  0.571 0.509 0.364 0.289 0.234 0.204
10/9 1.085 1.433 1.097 0.831 0.664 0478 0.423 0.291 0.226 0.178 0.152
12/9 0.695 1.240  0.955 0.721 0.558 0.391 0.343 0.225 0.164 0.126 0.106
14/9 0.445 1.046  0.808 0.608 0.458 0.312 0.268 0.161 0.109 0.078 0.063
16/9 0.286 0.862 0.671 0.502 0.367 0.242 0.215 0.096 0.046 0.038 0.026

2 0.187 0.653  0.508 0.360 0.257  0.100 0.013 —0.004 0.001 —0:000 0.000
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Table 4. Values of the incident flux F;, the extinction cross-section ¢ and Legendre coefficients of the phase function w;

(i =0,..., 4) recovered as solution of the inverse problem. In brackets the true values are given. Three experimental designs

(plans 1-3) and three step sizes along the depth coordinate (lines 1-3) are used; in brackets, the relative error in per cent
is presented. The calculated values are the averages over the entire depth of the sample

Plan 1: Plan 2: Plan 3:
Calculated magnitude Equidistant Gaussian points Equidistant
(its true value) with step 20° with step 10° with step 10°
F, (10) 9.9380 10.0190 10.0010
¢ (2) 1.9790 2.0006 2.0022
@0(0.8) 1 0.8030 (+0.4%) 0.8067 (+0.8%) 0.8033 (+0.4%)
2 0.8049 ( +0.6%) 0.8078 (+1.0%) 0.8051 (+0.6%)
3 0.8062 ( + 1.0%) 0.8111 (+1.4%) 0.8084 (+1.0%)
,(0.4) 1 0.3868 (—3.3%) 0.3896 (—2.6%) 0.3903 (—2.4%)
2 0.3819 (—4.5%) 0.3845 (—3.9%) 0.3848 (—3.8%)
3 0.3732 (—6.7%) 0.3756 (—6.1%) 0.3761 (—6.0%)
,(0.2) 1 0.1864 (—6.8%) 0.1911 (—4.5%) 0.1965(—1.7%)
2 0.1871 (~6.5%) 0.1900 (—5.0%) 0.1961 (—1.9%)
3 0.1853 (—7.3%) 0.1868 (—6.6%) 0.1946 (—2.7%)
@y(0.1) 1 0.1186 (+18.6%) 0.1252 (+25%) 0.1253 (+25.0%)
2 0.1205 (+20.5%) 0.1311 (+31.0%) 0.1266 (+26.6%)
3 0.1231 (+23.1%) 0.1335(+33.5%) 0.1290 (+29.0%)
@0.05) 1 0.0432 (—13.6%) 0.0564 (+12.7%) 0.0424 (—15.2%)
2 0.0395 (—20.9%) 0.0571 (+14.1%) 0.0444 (—11.0%)
3 0.04092 (—18.2%) 0.0599 (+19.8%) 0.0482 (~3.7%)

As seen in Table 4 the values of F,, ¢ are recovered with negligible errors, the errors for w,, w,,

w, are between 1% and 6%. Only for w,, w, having small absolute values the errors reach in some
cases 20%. As expected the error for a given w, increases with increasing distance between the
neighboring depths involved in the estimation of the increments of moments (compare lines 1-3).
Even more important error source is the flattening of the gradients of moments in the deep region
of the sample (c.f., Fig. 4). The results averaged over the entire sample shown in Table 4 are heavily
loaded with the large errors occurring in the lower half of the sample where the moment gradients
become flat. The same results for w, as in Table 4 but averaged over the upper half where the curves
K, (x) are steep show strongly decreased errors, so that also w,, w, are determined to the accuracy
of about 10% (Table 5). A comparison of different plans shows that measurements in Gaussian
points (plan 2) are more accurate then the equivalent equidistant set (plan 1). Plan 3 produces the
same accuracy as plan 2 but at the prize of a doubled number of measurements.

We can conclude that the theoretical errors caused by the inversion of the problem of radiative
transfer and by the discretion of the radiance distribution due to finite number of measurements
are rather small. Legendre coefficients up to w, can be recovered with the error not exceeding 10%.
The method is stable with respect to the variations of the geometry of measurements and of the
step along the depth coordinate. A practical recommendation for increasing the accuracy is to
repeat the measurements illuminating the opposite side or, if possible, to dissect the sample
laterally. In both cases optical parameters at some depths can be studied then under condition of

Table 5. The same magnitudes as in Table 4, however the calculated values are averaged over the upper half of the sample
where the gradient of the moments are steeper (c.f., Fig. 4). The relative errors are significantly lowered

Plan 1:
Equidistant
with step 20°

Calculated magnitude
(its true value)

Plan 2:
Gaussian points
with step 20°

Plan 3:
Equidistant 3
with step 10°

w, (0.8) 1 0.7965 (—0.4%)
2 0.7990 (—0.1%)
@, (0.4) 1 0.3917 (- 2.1%)
2 0.3784 (—5.4%)
@ (0.2) 1 0.1975 (—1.2%)
2 0.1982 (—0.9%)
w; (0.1) I 0.1008 (+0.8%)
2 0.1081 (+8.1%)
s (0.05) 1 0.0409 (—18.2%)
2 0.0384 (—23.2%)

0.8064 (+0.8%)
0.8059 (+0.6%)
0.3939 (—1.5%)
0.3805 (—4.9%)
0.1938 (—3.1%)
0.1952 (—2.4%)
0.1124 (+12.4%)
0.1184 (+18.4%)
0.0548 (+9.5%)
0.0517 (+3.4%)

0.7986 (—0.2%)
0.8004 (+0.05%)
0.3983 (—0.4%)
0.3834 (—4.1%)
0.2037 (+1.8%)
0.2042 (+2.1%)
0.1061 (+6.1%)
0.1128 (+12.8%)
0.0472 (—5.6%)
0.0446 (—10.7%)
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steeper curves K,, (x) providing smaller error. It should be noted that in this example we had the
constant over all depth ¢ and p(u, u’) to facilitate the sensitivity analysis. The method is, however,
not restricted to constant parameters and yields the x-dependent magnitudes from different depths.

3. CONCLUDING REMARKS

Generally relations involving moments of the radiance distribution are convenient and some of
them were used for theoretical and practical purposes. The first equation of the system (6) is nothing
else as the continuity equation for the radiant flux in the x direction (cf., chapter 7.3 in Ref. [18]).
It is reduced to a conservation law when no internal sources are present (i.e., F, = 0). In the
hydro-optics this conservation law known as Gershun’s law (cf. chapter 5.10 in Ref. [21]) was used
to estimate on the basis of the measured AK,/Ax and K, the absorption cross-section which is
o+(1 — w,) in our designations. Morse and Feshbach® wrote explicitly two first Eq. (6) (with F;, = 0)
when discussing diffusion equation in their fundamental work (see chapter 12.2 in Ref. [22]). They
noted that the equations for higher moments may have the standard structure of the two first
equations, i.e., the derivative of a higher moment is a function of the previous moment and previous
Legendre coefficient. This is not quite right as seen from Eq. (6), where the derivatives of the even
moments depend on the all previous odd moments and Legendre coefficients and vice versa.

To our knowledge no attempts to apply the relationships between the moments and the phase
function for a derivation of a general approach to inverse problem have been reported before and
it is understandable: there was no reliable experimental basis for this application. Only the
introduction of reproducible three-dimensional measurements of the internal fluxes together with
the theory correcting for the instrumental error suggest this idea. The first step after deriving the
theory (Sec. 2.3.1 and Sec. 2.3.2) was the sensitivity analysis and the estimation of the theoretical
errors originated by the inversion and discretion of the problem of radiative transfer (Sec. 2.3.3).
These universal errors should be separated from the experimental errors which depend on the
nature of the sample and on the measuring device.

The next step (in progress) will be the experimental test where only one part of the measured
data is theoretically processed while another part is compared to the radiance distributions
calculated with the optical parameters obtained as solution of the inverse problem. Generally an
additional random item arising in the measured magnitudes due to the experimental errors can,
for some types of operators, cause a disproportionately large error in the solution of the inverse
problem (so called improperly posed inverse problems™*). In such cases special treatments are
necessary. Results obtained in Sec. 2.3.3 suggest, that this is a ‘good’ operator providing stable
solutions also for varying input data. However, only after performing experimental tests and
clarifying the above points the method presented in this paper may become a standard one for all
cases where the measurements of the internal fluxes appear feasible.
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